Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Mol Biol Rep ; 51(1): 580, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38668754

RESUMO

OBJECTIVE: Superoxide dismutase 1 (SOD1) is an important antioxidant enzyme whose main function is to neutralise superoxide free radicals in the cytoplasm. Heterozygous variants in SOD1 are responsible for a substantial percentage of familial amyotrophic lateral sclerosis (ALS) cases. Recently, several reports have shown that biallelic loss of SOD1 function results in a novel phenotype called infantile SOD1 deficiency syndrome, which is consistent with a recessive pattern of inheritance and can be distinguished from typical (adult-onset) ALS. METHODS: We documented detailed family histories and clinical data, followed by whole-exome sequencing and family co-segregation analysis through Sanger sequencing. To facilitate comparisons, relevant data from fifteen previously reported patients with SOD1-related neurodevelopmental disorders were included. RESULTS: This study presents a new Turkish family with two affected children exhibiting severe delayed motor development, infancy-onset loss of motor skills, axial hypotonia, tetraspasticity, and impaired cognitive functions. Genetic analysis revealed a novel homozygous frameshift variant in SOD1 (c.248dupG [p.Asp84Argfs*8]), with computational biochemical studies shedding light on the mechanistic aspects of SOD1 dysfunction. CONCLUSIONS: Our findings contribute an affirmative report of a fourth biallelic variant resulting in a severe clinical phenotype, reminiscent of those induced by previously identified homozygous loss-of-function SOD1 variants. This research not only advances our understanding of the pathogenesis of this debilitating neurological syndrome but also aligns with ongoing intensive efforts to comprehend and address SOD1-linked ALS.


Assuntos
Sequenciamento do Exoma , Homozigoto , Linhagem , Fenótipo , Superóxido Dismutase-1 , Humanos , Superóxido Dismutase-1/genética , Masculino , Feminino , Sequenciamento do Exoma/métodos , Esclerose Amiotrófica Lateral/genética , Pré-Escolar , Lactente , Turquia , Criança
2.
Mol Syndromol ; 15(1): 77-82, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38357256

RESUMO

Introduction: Familial glucocorticoid deficiency (FGD) is a rare autosomal recessive disease resulting from isolated glucocorticoid deficiency or unresponsiveness to adrenocorticotropic hormone. Patients with FGD usually present in infancy or early childhood with hyperpigmentation, recurrent infections, and hypoglycemia. The salt-wasting crisis is rare. Case Presentation: A term female neonate was admitted to the neonatal intensive care unit due to respiratory distress. On physical examination, she had generalized hyperpigmentation. Initial laboratory work-up yielded normal serum electrolytes and glucose. Hyponatremia and hyperkalemia emerged on follow-up. The patient was diagnosed as having primary adrenal insufficiency (PAI) with elevated plasma adrenocorticotropin hormone and reduced cortisol levels and hydrocortisone. We started on oral sodium (5 mEq/kg/day) and fludrocortisone (FC) (0.2 mg/day) treatment to the patient. Ultrasonography revealed hypoplastic adrenal glands. Molecular genetic analysis revealed a previously reported homozygous pathogenic variant NM_000529.2: c.560delT (p.V187fs*29) in the MC2R gene. FC dose was tapered to 0.05 mg/day on the third month of life and was stopped at tenth months of age with maintenance of normal serum electrolytes and clinical findings. Conclusion: FGD due to MC2R gene mutation may rarely present with a salt-wasting crisis in the neonatal period. Identifying the causative gene with the pathogenic variant in PAI may serve to individualize a treatment plan.

3.
Neurogenetics ; 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388889

RESUMO

The terms developmental epileptic encephalopathy with spike-and-wave activation in sleep (DEE-SWAS) and epileptic encephalopathy with spike-and-wave activation in sleep (EE-SWAS) designate a spectrum of conditions that are typified by different combinations of motor, cognitive, language, and behavioral regression linked to robust spike-and-wave activity during sleep. In this study, we aimed at describing the clinical and molecular findings in "(developmental) epileptic encephalopathy with spike-and-wave activation in sleep" (D)EE-SWAS) patients as well as at contributing to the genetic etiologic spectrum of (D)EE-SWAS. Single nucleotide polymorphism (SNP) array and whole-exome sequencing (WES) techniques were used to determine the underlying genetic etiologies. Of the 24 patients included in the study, 8 (33%) were female and 16 (67%) were male. The median age at onset of the first seizure was 4 years and the median age at diagnosis of (D)EE-SWAS was 5 years. Of the 24 cases included in the study, 13 were compatible with the clinical diagnosis of DEE-SWAS and 11 were compatible with the clinical diagnosis of EE-SWAS. Abnormal perinatal history was present in four cases (17%), and two cases (8%) had a family history of epilepsy. Approximately two-thirds (63%) of all patients had abnormalities detected on brain computerized tomography/magnetic resonance (CT/MR) imaging. After SNP array and WES analysis, the genetic etiology was revealed in 7 out of 24 (29%) cases. Three of the variants detected were novel (SLC12A5, DLG4, SLC9A6). This study revealed for the first time that Smith-Magenis syndrome, SCN8A-related DEE type 13 and SLC12A5 gene variation are involved in the genetic etiology of (D)EE-SWAS. (D)EE-SWAS is a genetically diverse disorder with underlying copy number variations and single-gene abnormalities. In the current investigation, rare novel variations in genes known to be related to (D)EE-SWAS and not previously reported genes to be related to (D)EE-SWAS were discovered, adding to the molecular genetic spectrum. Molecular etiology enables the patient and family to receive thorough and accurate genetic counseling as well as a personalized medicine approach.

4.
Am J Med Genet A ; 194(5): e63535, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38189198

RESUMO

ABH8, the protein encoded by the ALKBH8 gene, modifies tRNAs by methylating their anticodon wobble uridine residues. The variations in the ALKBH8 gene are associated with the "intellectual developmental disorder, autosomal recessive type 71" (MIM: 618504) phenotype in the OMIM database. This phenotype is characterized by global developmental delay, facial dysmorphic features, and psychiatric problems. To date, 12 patients from five distinct families carrying variants of the ALKBH8 gene have been reported in the literature. In the present study, we report the first Turkish family harboring a novel homozygous missense variant, NM_138775.3:c.1874G > C (p.Arg625Pro), in the last exon of the ALKBH8 gene. Two affected siblings in this family showed signs of global developmental delay and intellectual disability. Based on the dysmorphological assessment of the cases, fifth finger clinodactyly and fetal fingertip pads were prominent, in addition to the dysmorphic findings similar to those reported in previous studies. Minor dysmorphic limb anomalies in relation to this phenotype have not yet been previously reported in the literature. Our computational studies revealed the potential deleterious effects of the Arg-to-Pro substitution on the structure and stability of the ABH8 methyltransferase domain. In the present report, the first Turkish family with an ultrarare disease associated with the ALKBH8 gene was reported, and a novel deleterious variant in the ALKBH8 gene and additional clinical features that were not reported with this condition have been reported.


Assuntos
Deficiência Intelectual , Humanos , Homólogo AlkB 8 da RNAt Metiltransferase/genética , Deficiências do Desenvolvimento/genética , Deficiência Intelectual/genética , Deficiência Intelectual/diagnóstico , Mutação de Sentido Incorreto/genética , Fenótipo , RNA de Transferência/genética
5.
Clin Transl Sci ; 17(1): e13679, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37955180

RESUMO

Dravet syndrome and genetic epilepsy with febrile seizures plus (GEFS+) are both epilepsy syndromes that can be attributed to deleterious mutations occurring in SCN1A, the gene encoding the pore-forming α-subunit of the NaV 1.1 voltage-gated sodium channel predominantly expressed in the central nervous system. In this research endeavor, our goal is to expand our prior cohort of Turkish patients affected by SCN1A-positive genetic epilepsy disorders. This will be accomplished by incorporating two recently discovered and infrequent index cases who possess a novel biallelic (homozygous) SCN1A missense variant, namely E158G, associated with Dravet syndrome. Furthermore, our intention is to use computational techniques to predict the molecular phenotypes of each distinct SCN1A variant that has been detected to date within our center. The correlation between genotype and phenotype in Dravet syndrome/GEFS+ is intricate and necessitates meticulous clinical investigation as well as advanced scientific exploration. Broadened mechanistic and structural insights into NaV 1.1 dysfunction offer significant promise in facilitating the development of targeted and effective therapies, which will ultimately enhance clinical outcomes in the treatment of epilepsy.


Assuntos
Epilepsias Mioclônicas , Epilepsia , Síndromes Epilépticas , Humanos , Epilepsias Mioclônicas/genética , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Síndromes Epilépticas/genética , Epilepsia/genética , Fenótipo , Mutação de Sentido Incorreto , Mutação
6.
J Mol Recognit ; 36(9): e3050, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37555623

RESUMO

The interactions of the classic phytohormones gibberellic acid (gibberellin A3 , GA3 ) and abscisic acid (dormin, ABA), which antagonistically regulate several developmental processes and stress responses in higher plants, with human placental glutathione S-transferase P1-1 (hpGSTP1-1), an enzyme that plays a role in endo- or xenobiotic detoxification and regulation of cell survival and apoptosis, were investigated. The inhibitory potencies of ABA and GA3 against hpGSTP1, as well as the types of inhibition and the kinetic parameters, were determined by making use of both enzyme kinetic graphs and SPSS nonlinear regression models. The structural basis for the interaction between hpGSTP1-1 and phytohormones was predicted with the aid of molecular docking simulations. The IC50 values of ABA and GA3 were 5.3 and 5.0 mM, respectively. Both phytohormones inhibited hpGSTP1-1 in competitive manner with respect to the cosubstrates GSH and CDNB. When ABA was the inhibitor at [CDNB]f -[GSH]v and at [GSH]f -[CDNB]v , Vm , Km , and Ki values were statistically estimated to be 205 ± 16 µmol/min-mg protein, 1.32 ± 0.18 mM, 1.95 ± 0.25 mM and 175 ± 6 µmol/min-mg protein, 0.85 ± 0.06 mM, 1.85 ± 0.16 mM, respectively. On the other hand, the kinetic parameters Vm , Km , and Ki obtained with GA3 at [CDNB]f -[GSH]v and at [GSH]f -[CDNB]v were found to be 303 ± 14 µmol/min-mg protein, 1.77 ± 0.13 mM, 3.38 ± 0.26 mM and 249 ± 7 µmol/min-mg protein, 1.43 ± 0.07 mM, 2.89 ± 0.19 mM, respectively. Both phytohormones had the potential to engage in hydrogen-bonding and electrostatic interactions with the key residues that line the G- and H-sites of the enzyme's catalytic center. Inhibitory actions of ABA/GA3 on hpGSTP1-1 may guide medicinal chemists through the structure-based design of novel antineoplastic agents. It should be noted, however, that the same interactions may also render fetuses vulnerable to the potentially toxic effects of xenobiotics and noxious endobiotics.


Assuntos
Giberelinas , Placenta , Humanos , Gravidez , Feminino , Placenta/metabolismo , Giberelinas/farmacologia , Simulação de Acoplamento Molecular , Reguladores de Crescimento de Plantas/farmacologia , Glutationa/metabolismo , Glutationa S-Transferase pi/metabolismo , Glutationa Transferase/metabolismo , Cinética
7.
Pathog Dis ; 812023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-37120729

RESUMO

Several studies have demonstrated that the effectiveness of carbapenems against drug-resistant Acinetobacter baumannii infections has been decreasing. Combination therapy with two or more drugs is currently under investigation to overcome the emerging resistance against carbapenems. In this study, we tested the possible synergistic interactions of a potent antibacterial flavonoid, baicalein, with meropenem to illustrate this duo's antibacterial and antibiofilm effects on 15 extensively drug resistant or pan-drug-resistant (XDR/PDR) A. baumannii clinical isolates in vitro. Isolates included in the study were identified with MALDI-TOF MS, and antibiotic resistance patterns were studied according to EUCAST protocols. Carbapenem resistance was confirmed with the modified Hodge test, and resistance genes were also analyzed with genotypical methods. Then, checkerboard and time-kill assays were performed to analyze antibacterial synergism. Additionally, a biofilm inhibition assay was performed for screening the antibiofilm activity. To provide structural and mechanistic insights into baicalein action, protein-ligand docking, and interaction profiling calculations were conducted. Our study shed light on the remarkable potential of the baicalein-meropenem combination, since either synergistic or additive antibacterial activity was observed against every XDR/PDR A. baumannii strain in question. Furthermore, the baicalein-meropenem combination displayed significantly better antibiofilm activity in contrast to standalone use. In silico studies predicted that these positive effects arose from inhibition by baicalein of A. baumannii beta-lactamases and/or penicillin-binding proteins. Overall, our findings highlight the prospective potential benefits of baicalein in combination with meropenem for the treatment of carbapenem-resistant A. baumannii infections.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Anti-Infecciosos , Humanos , Meropeném/farmacologia , Sinergismo Farmacológico , Infecções por Acinetobacter/tratamento farmacológico , Infecções por Acinetobacter/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Carbapenêmicos/farmacologia , Carbapenêmicos/uso terapêutico , Anti-Infecciosos/farmacologia , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana Múltipla
8.
Int J Mol Sci ; 24(4)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36835135

RESUMO

An imbalance in gut microbiota, termed dysbiosis, has been shown to affect host health. Several factors, including dietary changes, have been reported to cause dysbiosis with its associated pathologies that include inflammatory bowel disease, cancer, obesity, depression, and autism. We recently demonstrated the inhibitory effects of artificial sweeteners on bacterial quorum sensing (QS) and proposed that QS inhibition may be one mechanism behind such dysbiosis. QS is a complex network of cell-cell communication that is mediated by small diffusible molecules known as autoinducers (AIs). Using AIs, bacteria interact with one another and coordinate their gene expression based on their population density for the benefit of the whole community or one group over another. Bacteria that cannot synthesize their own AIs secretly "listen" to the signals produced by other bacteria, a phenomenon known as "eavesdropping". AIs impact gut microbiota equilibrium by mediating intra- and interspecies interactions as well as interkingdom communication. In this review, we discuss the role of QS in normobiosis (the normal balance of bacteria in the gut) and how interference in QS causes gut microbial imbalance. First, we present a review of QS discovery and then highlight the various QS signaling molecules used by bacteria in the gut. We also explore strategies that promote gut bacterial activity via QS activation and provide prospects for the future.


Assuntos
Disbiose , Percepção de Quorum , Humanos , Percepção de Quorum/genética , Bactérias/metabolismo , Comunicação Celular , Transdução de Sinais
9.
Planta Med ; 89(8): 790-799, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35439836

RESUMO

Origanum spp. are used both for culinary purposes and for their biological activities. In this study, commercial Origanum majorana, Origanum minutiflorum, Origanum vulgare, and Origanum onites essential oils and their prominent constituent carvacrol were evaluated for their in vitro and in silico angiotensin-converting enzyme 2 and lipoxygenase enzyme inhibitory potentials. The essential oils were analysed by gas chromatography-flame ionisation detection and gas chromatography-mass spectrometry, where carvacrol was identified as the major component (62 - 81%), confirming the quality. In vitro enzyme inhibition assays were conducted both with the essential oils (20 µg/mL) and with carvacrol (5 µg/mL). The comparative values of angiotensin-converting enzyme 2 percent inhibition for O. majorana, O. minutiflorum, O. vulgare, and O. onites essential oils were determined as 85.5, 79.1, 74.3, and 42.8%, respectively. As a result of the enzyme assays, carvacrol showed 90.7% in vitro angiotensin-converting enzyme 2 inhibitory activity. The in vitro lipoxygenase inhibition of the essential oils (in the same order) was 89.4, 78.9, 81.1, and 73.5%, respectively, where carvacrol showed 74.8% inhibition. In addition, protein-ligand docking and interaction profiling was used to gain structural and mechanistic insights into the angiotensin-converting enzyme 2 and lipoxygenase inhibitory potentials of major Origanum essential oil constituents. The in silico findings agreed with the significant enzyme inhibition activity observed in vitro. Further in vivo studies are suggested to confirm the safety and efficacy of the oils.


Assuntos
Óleos Voláteis , Origanum , Enzima de Conversão de Angiotensina 2 , Lipoxigenases , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Origanum/química , Humanos
10.
Chem Biol Interact ; 369: 110263, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36375516

RESUMO

The aim of this study was to evaluate the therapeutic effect of active ethanol extract obtained from the leaves of Rubus tereticaulis (RTME) against colitis, and to purify major compounds from this extract by bioassay-directed isolation. Rats with colitis induced via intra-rectal acetic acid administration (5%, v/v) received RTME or sulfasalazine for three consecutive days. On day four, all rats were decapitated, and the colonic tissue samples were collected for macroscopic score, colon weight, reduced glutathione (GSH), myeloperoxidase (MPO), and malondialdehyde (MDA) analyses. The active compounds and chemical composition of RTME were determined by bio-guided isolation and LC-MS/MS, respectively. Compared to the colitis group, the rats treated with RTME displayed significantly lowered macroscopic scores and colon wet weights (p < 0.001). These effects were confirmed biochemically by a decrease in colonic MPO activity (p < 0.001), MDA levels (p < 0.001), and an increase in GSH levels (p < 0.001). Kaempferol-3-O-ß-d-glucuronide (RT1) and quercetin-3-O-ß-d-glucuronide (RT2) were found to be the major compounds of RTME, as evidenced by in vitro anti-inflammatory and antioxidant activity-guided isolation. Their anti-inflammatory/antioxidant activities were also predicted by docking simulations. Additionally, quinic acid, 5-caffeoylquinic acid, quercetin pentoside, quercetin glucoside, quercetin-3-O-ß-d-glucuronide, kaempferol-3-O-ß-d-glucuronide, and kaempferol rutinoside were identified in RTME via using LC-MS/MS. RT2, along with other compounds, may be responsible for the observed protective action of RTME against colitis. This study represents the first report on the beneficial effects of RTME in an experimental model of colitis and highlights the potential future use of RTME as a natural alternative to alleviate colitis.


Assuntos
Colite Ulcerativa , Colite , Rubus , Ratos , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Quempferóis/farmacologia , Etanol/farmacologia , Quercetina/farmacologia , Cromatografia Líquida , Glucuronídeos , Espectrometria de Massas em Tandem , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colo , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Ácido Acético/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Anti-Inflamatórios/efeitos adversos
11.
Antioxidants (Basel) ; 11(11)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36421407

RESUMO

Irinotecan (CPT-11) is a chemotherapeutic agent involved in the treatment regimens for several malignancies such as colorectal cancer. N-acetylcysteine (NAC) is a strong antioxidant and anti-inflammatory agent used in the treatment of several diseases related to oxidative stress and inflammation. This study aimed at investigating whether NAC provides protection against hepatorenal and gastrointestinal tissue damage induced by CPT-11. Thirty-two Wistar albino rats were divided into four groups as control, NAC, CPT-11, and CPT-11+NAC. Following the experimental period, blood, and tissue samples (liver, kidney, stomach, and small intestine) were collected, and biochemical indicators, together with pro-inflammatory cytokines (TNF-α and IL-1ß), matrix metalloproteinases (MMPs), malondialdehyde (MDA), glutathione peroxidase (GPx) and superoxide dismutase (SOD) levels were evaluated. Both the biochemical indicators and the pro-inflammatory cytokines, MMP, and MDA levels increased in animals treated with CPT-11, while SOD and GPx activities decreased. Histopathological evaluation revealed structural damage in all examined tissues. With NAC administration, significant improvements were observed, both biochemically and histologically. In conclusion, the results of the present study suggest that NAC treatment together with CPT-11 may have a beneficial effect on reducing CPT-11 toxicity in rats, by modulating inflammation and the oxidant-antioxidant balance. These results strongly promote further investigative studies.

12.
Antioxidants (Basel) ; 11(10)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36290656

RESUMO

Alpha-lipoic acid (ALA) is extensively utilized in multivitamin formulas and anti-aging products. The purpose of this study was to investigate the potential protective benefits of ALA on 5-fluorouracil (5-FU)-induced gastrointestinal mucositis in Wistar albino rats. Tissues from the stomach, small intestine, and large intestine were excised, and blood sera were obtained to identify biochemical indices such as TNF-α, IL-1ß, MDA, GPx, SOD, MMP-1, -2, -8, and TIMP-1. A histopathological study was also performed. The results revealed mucositis-elevated TNF-, IL-1, MDA, MMP-1, -2, -8, and TIMP-1 levels in both tissues and sera, and these values dropped dramatically following ALA treatment. Reduced SOD and GPx activities in mucositis groups were reversed in ALA-treated groups. The damage produced by mucositis in the stomach and small intestine regressed in the ALA-treated group, according to histopathological evaluation. Consequently, the implementation of ALA supplementation in 5-FU therapy may act as a protective intervention for cancer patients with gastrointestinal mucositis. In light of the findings, ALA, a food-derived antioxidant with pleiotropic properties, may be an effective treatment for 5-FU-induced gastrointestinal mucositus, and prevent oxidative stress, inflammation, and tissue damage in cancer patients receiving 5-FU therapy.

13.
Mol Biol Rep ; 49(8): 7483-7495, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35733065

RESUMO

BACKGROUND: Maturity-onset diabetes of the young (MODY), which is the most common cause of monogenic diabetes, has an autosomal dominant pattern of inheritance and exhibits marked clinical and genetic heterogeneity. The aim of the current study was to investigate molecular defects in patients with clinically suspected MODY using a next-generation sequencing (NGS)-based targeted gene panel. METHODS: Candidate patients with clinical suspicion of MODY and their parents were included in the study. Molecular genetic analyses were performed on genomic DNA by using NGS. A panel of ten MODY-causal genes involving GCK, HNF1A, HNF1B, HNF4A, ABCC8, CEL, INS, KCNJ11, NEUROD1, PDX1 was designed and subsequently implemented to screen 40 patients for genetic variants. RESULTS: Ten different pathogenic or likely pathogenic variants were identified in MODY-suspected patients, with a diagnostic rate of 25%. Three variants of uncertain significance were also detected in the same screen. A novel pathogenic variant in the gene HNF1A (c.505_506delAA [p.Lys169AlafsTer18]) was described for the first time in this report. Intriguingly, we were able to detect variants associated with rare forms of MODY in our study population. CONCLUSIONS: Our results suggest that in heterogenous diseases such as MODY, NGS analysis enables accurate identification of underlying molecular defects in a timely and cost-effective manner. Although MODY accounts for 2-5% of all diabetic cases, molecular genetic diagnosis of MODY is necessary for optimal long-term treatment and prognosis as well as for effective genetic counseling.


Assuntos
Diabetes Mellitus Tipo 2 , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Mutação/genética
14.
Pharmaceutics ; 14(5)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35631553

RESUMO

Antimicrobial resistance is among the top global health problems with antibacterial resistance currently representing the major threat both in terms of occurrence and complexity. One reason current treatments of bacterial diseases are ineffective is the occurrence of protective and resistant biofilm structures. Phytochemicals are currently being reviewed for newer anti-virulence agents. In the present study, we aimed to investigate the anti-virulence activity of 3,3'-diindolylmethane (DIM), a bioactive cruciferous phytochemical. Using a series of in vitro assays on major Gram-negative pathogens, including transcriptomic analysis, and in vivo porcine wound studies as well as in silico experiments, we show that DIM has anti-biofilm activity. Following DIM treatment, our findings show that biofilm formation of two of the most prioritized bacterial pathogens Acinetobacter baumannii and Pseudomonas aeruginosa was inhibited respectively by 65% and 70%. Combining the antibiotic tobramycin with DIM enabled a high inhibition (94%) of P. aeruginosa biofilm. A DIM-based formulation, evaluated for its wound-healing efficacy on P. aeruginosa-infected wounds, showed a reduction in its bacterial bioburden, and wound size. RNA-seq was used to evaluate the molecular mechanism underlying the bacterial response to DIM. The gene expression profile encompassed shifts in virulence and biofilm-associated genes. A network regulation analysis showed the downregulation of 14 virulence-associated super-regulators. Quantitative real-time PCR verified and supported the transcriptomic results. Molecular docking and interaction profiling indicate that DIM can be accommodated in the autoinducer- or DNA-binding pockets of the virulence regulators making multiple non-covalent interactions with the key residues that are involved in ligand binding. DIM treatment prevented biofilm formation and destroyed existing biofilm without affecting microbial death rates. This study provides evidence for bacterial virulence attenuation by DIM.

16.
Molecules ; 27(3)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35163950

RESUMO

Polygala species are frequently used worldwide in the treatment of various diseases, such as inflammatory and autoimmune disorders as well as metabolic and neurodegenerative diseases, due to the large number of secondary metabolites they contain. The present study was performed on Polygala inexpectata, which is a narrow endemic species for the flora of Turkey, and resulted in the isolation of nine known compounds, 6,3'-disinapoyl-sucrose (1), 6-O-sinapoyl,3'-O-trimethoxy-cinnamoyl-sucrose (tenuifoliside C) (2), 3'-O-(O-methyl-feruloyl)-sucrose (3), 3'-O-(sinapoyl)-sucrose (4), 3'-O-trimethoxy-cinnamoyl-sucrose (glomeratose) (5), 3'-O-feruloyl-sucrose (sibiricose A5) (6), sinapyl alcohol 4-O-glucoside (syringin or eleutheroside B) (7), liriodendrin (8), and 7,4'-di-O-methylquercetin-3-O-ß-rutinoside (ombuin 3-O-rutinoside or ombuoside) (9). The structures of the compounds were determined by the spectroscopic methods including 1D-NMR (1H NMR, 13C NMR, DEPT-135), 2D-NMR (COSY, NOESY, HSQC, HMBC), and HRMS. The isolated compounds were shown in an in silico setting to be accommodated well within the inhibitor-binding pockets of myeloperoxidase and inducible nitric oxide synthase and anchored mainly through hydrogen-bonding interactions and π-effects. It is therefore plausible to suggest that the previously established anti-inflammatory properties of some Polygala-derived phytochemicals may be due, in part, to the modulation of pro-inflammatory enzyme activities.


Assuntos
Compostos Fitoquímicos/análise , Extratos Vegetais/farmacologia , Polygala/metabolismo , Anti-Inflamatórios/análise , Cromatografia Líquida de Alta Pressão/métodos , Flavonoides/isolamento & purificação , Flavonoides/farmacologia , Glucosídeos/isolamento & purificação , Glucosídeos/farmacologia , Simulação de Acoplamento Molecular , Estrutura Molecular , Fenilpropionatos/isolamento & purificação , Fenilpropionatos/farmacologia , Compostos Fitoquímicos/isolamento & purificação , Raízes de Plantas/química , Polygala/genética , Sacarose/isolamento & purificação , Sacarose/metabolismo , Turquia
17.
Metab Brain Dis ; 37(4): 1041-1055, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35201555

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive deterioration of cognitive functions (dementia) and represents a growing public health concern since the population in the age groups at risk is increasing. The latter raises an urgent need to translate research findings in the basic brain and behavioral sciences into anti-AD drugs and disease-modifying therapies. Origanum onites (L.), also called Turkish oregano, is a perennial and herbaceous plant species grown for centuries for medicinal, cosmetic and culinary purposes. This is the first study to investigate the putative neuroprotective and pro-cognitive activities of O. onites essential oil (OOEO) against scopolamine-induced amnesia of AD-type in Wistar albino rats. The results of behavioral tests revealed that OOEO administration was able to significantly alleviate learning and memory impairments induced by scopolamine in vivo. The observed effects could be attributed to inhibition of acetylcholinesterase activity, attenuation of oxidative stress and prevention of neuronal apoptosis in the hippocampus and frontal cortex of AD rats. Modulation of pro-inflammatory enzymes, including cyclooxygenase-2, inducible nitric oxide synthase and myeloperoxidase, might further contribute to the neuroprotective properties of OEOO, as predicted by our in silico models. These findings offer novel insights into the therapeutic potential of OEOO in patients with AD.


Assuntos
Doença de Alzheimer , Óleos Voláteis , Origanum , Acetilcolinesterase , Animais , Cognição , Humanos , Óleos Voláteis/farmacologia , Óleos Voláteis/uso terapêutico , Ratos , Ratos Wistar , Escopolamina
18.
Acta Neurol Belg ; 122(4): 955-960, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33420941

RESUMO

Here, we aim to provide a comprehensive clinical and biomolecular description of familial amyotrophic lateral sclerosis (fALS) in a 25-year-old female patient with respect to the SOD1A4T genotype. The clinical diagnosis of the disease was based on family history, neurological examination, electroneurophysiological studies, and revised El Escorial criteria. The heterozygous presence of the A4T mutation in the proband was confirmed by PCR coupled with Sanger sequencing of exon 1 of the SOD1 gene. The mutation was introduced in silico into the three-dimensional structure of the native protein. After energy minimization and quality assessment, non-covalent interactions around threonine-4 and changes in protein stability were calculated computationally. The patient differed widely in age at onset, initial neurological symptoms and findings, and survival time from her kindred, in which several members are affected. SOD1A4T-linked fALS in this case had bulbar involvement at onset, a combination of lower and upper motor neuron signs and showed rapid progression. Unlike alanine-4, threonine-4 failed to engage in hydrophobic interactions with the vicinal non-polar amino acids. The overall fold of the modeled SOD1A4T mutant remained intact, but unfolding free energy estimations disclosed a decrease in the protein's stability. We report a phenotypically distinct patient with fALS due to the SOD1A4T mutation and further expand the largest pedigree ever published for SOD1A4T-linked fALS. Genotype‒phenotype correlation in fALS is complex, and it demands detailed clinical investigation and advanced scientific research. Awareness of the broadened phenotypic spectrum might potentially enhance the diagnosis and genetic counseling of fALS.


Assuntos
Esclerose Amiotrófica Lateral , Esclerose Amiotrófica Lateral/genética , Feminino , Humanos , Mutação , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1/genética , Treonina/genética
19.
Int J Mol Sci ; 22(18)2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34576027

RESUMO

Despite having been tagged as safe and beneficial, recent evidence remains inconclusive regarding the status of artificial sweeteners and their putative effects on gut microbiota. Gut microorganisms are essential for the normal metabolic functions of their host. These microorganisms communicate within their community and regulate group behaviors via a molecular system termed quorum sensing (QS). In the present study, we aimed to study the effects of artificial sweeteners on this bacterial communication system. Using biosensor assays, biophysical protein characterization methods, microscale thermophoresis, swarming motility assays, growth assays, as well as molecular docking, we show that aspartame, sucralose, and saccharin have significant inhibitory actions on the Gram-negative bacteria N-acyl homoserine lactone-based (AHL) communication system. Our studies indicate that these three artificial sweeteners are not bactericidal. Protein-ligand docking and interaction profiling, using LasR as a representative participating receptor for AHL, suggest that the artificial sweeteners bind to the ligand-binding pocket of the protein, possibly interfering with the proper housing of the native ligand and thus impeding protein folding. Our findings suggest that these artificial sweeteners may affect the balance of the gut microbial community via QS-inhibition. We, therefore, infer an effect of these artificial sweeteners on numerous molecular events that are at the core of intestinal microbial function, and by extension on the host metabolism.


Assuntos
Proteínas de Bactérias/genética , Microbioma Gastrointestinal/efeitos dos fármacos , Percepção de Quorum/efeitos dos fármacos , Edulcorantes/efeitos adversos , Transativadores/genética , Aspartame/efeitos adversos , Técnicas Biossensoriais/métodos , Hidrolases de Éster Carboxílico/genética , Comunicação Celular/efeitos dos fármacos , Microbioma Gastrointestinal/genética , Bactérias Gram-Negativas/efeitos dos fármacos , Humanos , Simulação de Acoplamento Molecular , Sacarina/efeitos adversos , Sacarose/efeitos adversos , Sacarose/análogos & derivados , Edulcorantes/farmacologia
20.
Turk J Chem ; 45(3): 858-867, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34385872

RESUMO

Regarding the abundant use of metals for different purposes, it becomes more critical from various scientific and technological perspectives to discover novel agents as selective probes for the detection of specific metals. In our previous studies, we have shown that aqueous solutions of natural urolithins (i.e., hydroxyl-substituted benzo[c]chromen-6-one derivatives) are selective Iron (III) sensors in fluorescence assays. In this study, we have extrapolated these findings to another coumarine compound (i.e., 3-Hydroxy-7,8,9,10-tetrahydro-6H-benzo[c]chromen-6-one) and compared the selective metal binding properties with Urolithin B (i.e., 3-Hydroxy-6H-benzo[c]chromen-6-one). Following the synthesis and structure identification studies, the fluorometric studies pointed out that the lactam group in the structure still persists to be the important scaffold for maintaining selective on-off sensor capacity that renders the compound a selective Iron (III) binding probe. Moreover, for the first time, fluorescence cellular imaging studies concomitant to cytotoxicity assays with the title compounds were also performed and the results displayed the cell-penetrative, safe, and fluorescent detectable characteristics of the compounds in neuroblastoma and glioblastoma cells through servings as intracellular Iron (III) on-off sensors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...